CHAPTER 8: EXPONENTS & EXPONENTIAL FUNCTIONS

Arithmetic & Geometric Sequences

OBJECTIVES

- □ I can think reasonably to discover and continue a number pattern
- □ I can form arithmetic sequences
- □ I can form geometric sequences
- I can use formulas for arithmetic and geometric sequences

VOCABULARY

Sequence	Arithmetic Sequence	Common difference	Geometric Sequence	Common Ratio
A number pattern	Sequence formed by adding a fixed (+/-) number to each previous term	The fixed number being added in an arithmetic sequence	Sequence formed by multiplying a fixed number to each previous term	The fixed number being multiplied in an geometric sequence
EXAMPLE	EXAMPLE	EXAMPLE	EXAMPLE	EXAMPLE

NOTES PART 1: ARITHMETIC SEQUENCES

Find the common difference of each sequence. **a.** 11, 23, 35, 47, . . . **b.** 8, 3, -2, -7, . . .

PART 1: ARITHMETIC SEQUENCES

RuleArithmetic SequenceA(n) = a + (n - 1)d \uparrow \uparrow hhfirsttermtermnumberdifference

PART 1: ARITHMETIC SEQUENCES

Find the first, sixth, and twelfth terms of each sequence. **a.** A(n) = -5 + (n - 1)(3)**b.** A(n) = 6.3 + (n - 1)(5)

PART 2: GEOMETRIC SEQUENCES

Find the common ratio of each sequence. **a.** 750, 150, 30, 6, . . . **b.** -3, -6, -12, -24, . . .

PART 2: GEOMETRIC SEQUENCES

PART 2: GEOMETRIC SEQUENCES

Find the first, sixth, and twelfth terms of each sequence. **a.** $A(n) = 4 \cdot 3^{n-1}$ **b.** $A(n) = -2 \cdot 5^{n-1}$

PART 3: ARITHMETIC VS. GEOMETRIC SEQUENCES

 Determine whether each sequence is arithmetic or geometric.

 a. 2, 4, 6, 8, . . .
 b. 2, 4, 8, 16, . . .
 c. 1, 3, 5, 7, . . .

CAN YOU?? PROVE IT!!

I can think reasonably to discover and continue a number pattern

□ I can form arithmetic sequences

□ I can form geometric sequences

I can use formulas for arithmetic and geometric sequences

Determine whether each sequence is arithmetic or geometric.

13. 2, 14, 98, 686, . . . **14.** 12, 8, 4, 0, . . . **15.** 9, -36, 144, -576, . . .