CHAPTER 9: POLYNOMIALS \& FAC'TORING

Multiplying Polynomials

OBJECTIVES

- I can multiply a monomial to a polynomial
- I can multiply two binomials
- I can multiply a binomial \& a trinomial

PART 1: DISTRIBUTIVE PROPERTY

$a(b+c)=a b+a c$

$$
\begin{aligned}
6(x-2) & =6(x)+6(-2)=6 x-12 \\
-3(4 x-1) & =-3(4 x)+-3(-1)=-12 x+3
\end{aligned}
$$

PART 2: DOUBLE DISTRIBUTION

(1) Simplify each product.
a. $(6 h-7)(2 h+3)$
b. $(5 m+2)(8 m-1)$
c. $(9 a-8)(7 a+4)$

PART 2: DOUBLE DISTRIBUTION

Simplify.
22. $(x+9)\left(x^{2}-4 x+1\right) \quad$ 23. $(a-4)\left(a^{2}-2 a+1\right)$

PART 3: SPECIAL CASES

```
4) Find each product.
    a. (d+11)(d-11) b. (c2+8)(c2-8) c. }(9\mp@subsup{v}{}{3}+\mp@subsup{w}{}{4})(9\mp@subsup{v}{}{3}-\mp@subsup{w}{}{4}
```


PART 3: SPECIAL CASES

Rule \quad The Square of a Binomial
$(a+b)^{2}=a^{2}+2 a b+b^{2}$ $(a-b)^{2}=a^{2}-2 a b+b^{2}$ The square of a binomial is the square of the first term plus twice the product of the two terms plus the square of the last term.
Rule The Difference of Squares
$(a+b)(a-b)=a^{2}-b^{2}$ The product of the sum and difference of the same two terms is the difference of their squares.

$(a+b)^{2}=a^{2}+2 a b+b^{2}$
$(a-b)^{2}=a^{2}-2 a b+b^{2}$
of the two terms plus the square of the last term.
$(a+b)(a-b)=a^{2}-b^{2}$
The product of the sum and difference of the same two terms is the difference of their squares.

CAN YOU?? PROVE IT!!

- I can multiply a monomial to a polynomial
- I can multiply two binomials
- I can multiply a binomial \& a trinomial
- Go back and finish all the blank problems ©

