CHAPTER 12: QUADRATIC EQUATIONS

Graphing Quadratics Part \#2 - Vertex Form

PART 1:VERTEX FORM

Not every quadratic function can be factored, so we need an alternate method to graph

Vertex Form

$$
y=a(x-h)^{2}+k
$$

VERTEX: (h, k)

OBJECTIVES

- I can find the vertex of a quadratic function
- I can graph a quadratic function by finding the vertex
\& other critical points

PART I:VERTEX FORM

Example 1: Find the vertex of each quadratic. State if it is a maximum or minimum.
a. $y=(x-1)^{2}$
b. $y=-(x-1)^{2}+3 \quad$ c. $y=2(x+1)^{2}+4$
d. $y=-5(x+3)^{2}-14$

Example 2: Write an equation of a quadratic with the given vertex
a. $(-3,5)$
b. $(5,0)$
c. $(7,-2)$

PART 1:VERTEX FORM

Example 3: Graph $y=-(x-5)^{2}+9$
Opens: \qquad
Max/Min: \qquad
Vertex: \qquad
AOS: \qquad
X-Intercepts: \qquad

PART 2: CONVERTING TO VERTEX FORM

- In order to convert an equation from standard form $\left(y=a x^{2}+b x+c\right)$ to vertex form ($y=a(x-h)^{2}+k$) you need to complete the square
- Convert to vertex form

1) $y=x^{2}+16 x+71$
2) $y=x^{2}-2 x-5$

PART 1:VERTEX FORM

Example 4: Graph $y=2(x+4)^{2}+1$
Opens: \qquad $-$
Max/Min: \qquad
Vertex: \qquad
AOS:
X-Intercepts: \qquad

CAN YOU?? PROVE IT!!

- I can find the vertex of a quadratic function
- I can graph a quadratic function by finding the vertex \& other critical
points
Convert to vertex form and graph $y=x^{2}-6 x+5$

