CHAPTER 12: QUADRATIC EQUATIONS

Graphing Quadratics Part #2 - Vertex Form

OBJECTIVES

- □ I can find the vertex of a quadratic function
- I can graph a quadratic function by finding the vertex& other critical points

PART 1: VERTEX FORM

 Not every quadratic function can be factored, so we need an alternate method to graph

Vertex Form

$$y = a(x - h)^2 + k$$

 $\underline{\textbf{VERTEX}}$: (h, k)

 $\underline{\mathbf{A} \circ \mathbf{S}} : \mathbf{x} = \mathbf{h}$

<u>DIRECTION</u>: a>0 = up, a<0 = down

PART 1: VERTEX FORM

Example 1: Find the vertex of each quadratic. State if it is a maximum or minimum.

a.
$$y = (x - 1)^2$$
 b. $y = -(x - 1)^2 + 3$ c. $y = 2(x + 1)^2 + 4$ d. $y = -5(x + 3)^2 - 14$

Example 2: Write an equation of a quadratic with the given vertex.

PART 1: VERTEX FORM

Example 3: Graph $y = -(x - 5)^2 + 9$

Opens: _____ Max/Min: ____

Vertex: _____

X-Intercepts:

PART 1: VERTEX FORM

Example 4: Graph $y = 2(x + 4)^2 + 1$

Opens: _____

Max/Min: _____ Vertex: _____

AOS:

X-Intercepts:

PART 2: CONVERTING TO VERTEX FORM

- * In order to convert an equation from standard form $(y=ax^2+bx+c)$ to vertex form $(y=a(x-h)^2+k)$ you need to complete the square
- Convert to vertex form

1)
$$y = x^2 + 16x + 71$$

2)
$$y = x^2 - 2x - 5$$

PART 2: CONVERTING TO VERTEX FORM

- Convert to vertex form

3)
$$y = -x^2 - 14x - 59$$

4)
$$y = 2x^2 + 36x + 170$$

CAN YOU?? PROVE IT!!

- $\hfill \square$ I can find the vertex of a quadratic function
- 🗆 I can graph a quadratic function by finding the vertex & other critical points

Convert to vertex form and graph $y = x^2 - 6x + 5$

$$y = x^2 - 6x + 5$$

