CHAPTER 12: QUADRATIC EQUATIONS

Graphing Quadratics Part \#1-Critical Points

OBJECTIVES

- I can find the number of real solutions of a quadratic
- I can graph a quadratic function by finding critical points

PART 1: \# OF REHL SOLUTIONS

The solutions of a quadratic equation and the related x-intercepts are often called roots of the equation or zeros of the function.

Quadratic equations can have two, one, or no solutions. You can determine how many solutions a quadratic equation has, before you solve it, by using the discriminant. The discriminant is the expression under the radical in the quadratic formula.

PART 1: \# OF REAL SOLUTIONS

PART 1: \# OF REAL SOLUTIONS

(1) Find the number of solutions for each equation.
a. $x^{2}=2 x-3$
b. $3 x^{2}-4 x=7$

PART 2: VOCABULARY

The highest or lowest point of a parabola is its vertex, which is on the axis of symmetry.

$$
\begin{array}{cc}
\begin{array}{c}
\text { If } a>0 \text { in } y=a x^{2}+b x+c \\
\downarrow
\end{array} & \begin{array}{c}
\text { If } a<0 \text { in } y=a x^{2}+b x+c \\
\downarrow
\end{array} \\
\text { the parabola opens upward. } \\
\downarrow & \begin{array}{c}
\text { the parabola opens downward. } \\
\downarrow
\end{array} \\
\text { The vertex is the minimum point }
\end{array} \begin{aligned}
& \text { The vertex is the maximum point } \\
& \text { or lowest point of the parabola. }
\end{aligned} \begin{aligned}
& \text { or highest point of the parabola. }
\end{aligned}
$$

PART 2: VOCABULARY

The simplest quadratic function, $f(x)=x^{2}$, or $y=x^{2}$, is the quadratic parent function.
The graph of a quadratic function is a U -shaped curve called a parabola. The graph of $y=x^{2}$, shown at the right, is a parabola.

You can fold a parabola so that the two sides match exactly. This property is called symmetry. The fold or line that divides the parabola into two matching halves is called the axis of symmetry.

PART 2: VOCABULARY

(1) Identify the vertex of each graph. Tell whether it is a minimum or maximum.
a.

b.

PART 3: CRITICAL POINTS/DATA

-There are several critical points or data we can find to help graph a quadratic function

1. Y-intercept: \qquad
2. X-intercept(s): \qquad
3. Axis of symmetry: \qquad
4. Vertex: \qquad

PART 3: CRITICHL POINTS

- Find the critical points of the function $f(x)=x^{2}+6 x+9$ and sketch a graph.

PART 3: CRITICHL POINTS

- Find the critical points of the function $f(x)=x^{2}+4 x+3$ and sketch a graph.

CAN YOU?? PROVE IT!!

- I can find the number of real solutions of a quadratic - I can graph a quadratic function by finding critical points

How many solutions does the equation $y=2 x^{2}+2 x-24$ have? Find the critical points and make a quick sketch.

