Name: \qquad Date: \qquad Hour: \qquad

Geometric Mean

Let's Review:

Algebraic Mean: The average. Add numbers up and divide by the number of numbers.

Example: Lucy scored a $75,92,83,85 \& 89$ on her chapter tests. What is her test average?

New Information:

Geometric mean: a special type of average. Multiply numbers together and take a square root (for two numbers), cube root (for three numbers)...

Example: Find the geometric mean of 2 and 18 .

Why do we need this?
The geometric mean is useful when we want to compare things with very different properties. As you can see a rectangle with dimensions of 2 and 18 has the
 same area as a square with a side length of 6 .

Example: you want to buy a new camera.

- One camera has a zoom of 200 and gets an 8 in reviews,
- The other has a zoom of 250 and gets a 6 in reviews.

Comparing using the usual arithmetic mean gives $(200+8) / 2=$ $\mathbf{1 0 4}$ vs $(250+6)=\mathbf{1 2 8}$. The zoom is such a big number that the user rating gets lost.

But the geometric means of the two cameras are:

- $\sqrt{ }(200 \times 8)=40$
- $\sqrt{ }(250 \times 6)=\mathbf{3 8 . 7} \ldots$

So, even though the zoom is 50 bigger, the lower user rating of 6 is still important.
\qquad Date: \qquad Hour: \qquad

Find the geometric mean of each pair of numbers. If necessary, give the answer in simplest radical form.

2a. 2 and 8
2b. 10 and 30
2c. 8 and 9

How can we use this?

Geometric means can also be written as proportions.
Can you find a number that fits below?
1: \square 4
2 \square 18
4 : \square 36

SECOND DEFINITION: A proportion where the numerator of one ratio is the denominator of the other.

Goal:

Find missing side lengths given a triangle like the one on the right. In a right triangle, an altitude drawn from the vertex of the right angle to the hypotenuse forms two right triangles.

These three triangles are similar with index cards.
\qquad Date: \qquad Hour: \qquad
Problem:
Since we have proved these triangles similar, we know the sides must be proportional (definition of similarity).

Find $x \& y$.

2.

