
CHAPTER 9: POLYNOMIALS & FACTORING

Factoring Weirds

PART 1: WEIRD CASE #1

TWO VARIABLES

b. $v^2 + 2vw - 48w^2$

OBJECTIVES

 $\ \square$ I can factor weird things (difference of squares, two variables, special cases)

PART 1: WEIRD CASE #2

DIFFERENCE OF TWO SQUARES

3 Factor each expression. Check your answer. **a.** $x^2 - 36$ **b.** $m^2 - 100$

c. $4w^2 - 49$

PART 1: WEIRD CASE #2

DIFFERENCE OF TWO SQUARES

Rule

Difference of Two Squares

For every real number a and b:

$$a^2 - b^2 = (a + b)(a - b)$$

Examples
$$x^2 - 81 = (x + 9)(x - 9)$$

 $16x^2 - 49 = (4x + 7)(4x - 7)$

PART 1: WEIRD CASE #3

PERFECT SQUARE TRINOMIALS

Rule

Perfect-Square Trinomials

For every real number a and b:

$$a^{2} + 2ab + b^{2} = (a + b)(a + b) = (a + b)^{2}$$

 $a^{2} - 2ab + b^{2} = (a - b)(a - b) = (a - b)^{2}$

Examples
$$x^2 + 10x + 25 = (x + 5)(x + 5) = (x + 5)^2$$

 $x^2 - 10x + 25 = (x - 5)(x - 5) = (x - 5)^2$

PART 1: WEIRD CASE #3

PERFECT SQUARE TRINOMIALS

Factor each expression.
a.
$$x^2 + 8x + 16$$

b.
$$4t^2 + 36t + 81$$

PART 1: WEIRD CASE #3

PERFECT SOUARE TRINOMIALS

Here is how to recognize a perfect-square trinomial.

- The first and the last terms can both be written as the product of two identical factors.
- The middle term is twice the product of one factor from the first term and one factor from the last term.

Consider the following trinomials.

$$4x^{2} + 12x + 9$$

$$2x \cdot 2x \qquad 3 \cdot 3$$

$$2(2x \cdot 3) = 12x$$

$$4x^{2} + 20x + 9$$

$$2x \cdot 2x \qquad 3 \cdot 3$$

$$2(2x \cdot 3) \neq 20x$$

This is a perfect-square trinomial.
In factored form the trinomial is
$$(2x + 3)(2x + 3)$$
, or $(2x + 3)^2$.

This is not a perfect-square trinomial. Factor by listing factors, as shown in Lesson 9-6.

CAN YOU?? PROVE IT!!

□ I can factor weirds

Factor each expression.

45.
$$100v^2 - 25w^2$$

45.
$$100v^2 - 25w^2$$
 46. $16p^2 - 48pq + 36q^2$ **48.** $\frac{1}{4}m^2 - \frac{1}{9}$ **49.** $x^2 + x + \frac{1}{4}$

48.
$$\frac{1}{4}m^2 - \frac{1}{9}$$

49.
$$x^2 + x + \frac{1}{2}$$