CHAPTER 9: POLYNOMIALS \& FAC'TORING

Factoring Weirds

OBIECTIVES

- I can factor weird things (difference of squares, two variables, special cases)

PART 1: WEIRD CASE \#1
TWO VARIABLES
(4) Factor each expression. a. $x^{2}+11 x y+24 y^{2}$

$$
\text { b. } v^{2}+2 v w-48 w^{2}
$$

PART 1:WEIRD CASE \#2
DIFPERENCE OF TWO SQUARES

[^0]
PART 1:WEIRD CASE \#2
 DIFFERENCE OF TwO SQUARES

```
Rule
Difference of Two Squares
For every real number \(a\) and \(b\) :
\(a^{2}-b^{2}=(a+b)(a-b)\)
Examples \(\quad x^{2}-81=(x+9)(x-9)\)
\[
16 x^{2}-49=(4 x+7)(4 x-7)
\]
```


PART 1: WEIRD CASE \#3

PERFECT SQUARE TRINOMIALS

```
Rule
    Perfect-Square Trinomials
For every real number }a\mathrm{ and }b\mathrm{ :
a}\mp@subsup{a}{}{2}+2ab+\mp@subsup{b}{}{2}=(a+b)(a+b)=(a+b\mp@subsup{)}{}{2
a}\mp@subsup{a}{}{2}-2ab+\mp@subsup{b}{}{2}=(a-b)(a-b)=(a-b\mp@subsup{)}{}{2
Examples }\quad\mp@subsup{x}{}{2}+10x+25=(x+5)(x+5)=(x+5\mp@subsup{)}{}{2
    \mp@subsup{x}{}{2}-10x+25=(x-5)(x-5)=(x-5\mp@subsup{)}{}{2}
```


PART 1:WEIRD CASE \#3

PEREECT SQuARe trinomials
1 Factor each expression
a. $x^{2}+8 x+16$

PART 1:WEIRD CASE \#3

PEREECT SOUARE TRINOMIALS

Here is how to recognize a perfect-square trinomial.

- The first and the last terms can both be written as the product of two identical factors.
- The middle term is twice the product of one factor from the first term and one factor from the last term.
Consider the following trinomials.

This is a perfect-square trinomial. In factored form the trinomial is $(2 x+3)(2 x+3)$, or $(2 x+3)^{2}$.

This is not a perfect-square trinomial Factor by listing factors, as shown in Lesson 9-6.

CAN YOU?? PROVE IT!!

- I can factor weirds

Factor each expression.
45. $100 v^{2}-25 w^{2}$
46. $16 p^{2}-48 p q+36 q^{2}$
48. $\frac{1}{4} m^{2}-\frac{1}{9}$
49. $x^{2}+x+\frac{1}{4}$

[^0]:
 3. Factor each expression. Check your answer
 $\begin{array}{ll}\text { a. } x^{2}-36 & \text { b. } m^{2}-100\end{array}$

