CHAPTER 9: POLYNONIILS \& PhCTORING

OBJECTIVES

- I can factor a monomial from a polynomial
- I can factor polynomials with four terms

PART 1: FHCTORING GCFS

- Factoring reverses multiplication

Multiplying	Factoring
$\begin{aligned} 3(5 x+1) & =3 \cdot 5 x+3 \cdot 1 \\ & =15 x+3 \end{aligned}$	$\begin{aligned} 15 x+3 & =3 \cdot 5 x+3 \cdot 1 \\ & =3(5 x+1) \end{aligned}$
$\begin{aligned} 2 x^{2}\left(3 x^{3}+4\right) & =2 x^{2} \cdot 3 x^{3}+2 x^{2} \cdot 4 \\ & =6 x^{5}+8 x^{2} \end{aligned}$	$\begin{aligned} 6 x^{5}+8 x^{2} & =2 x^{2} \cdot 3 x^{3}+2 x^{2} \cdot 4 \\ & =2 x^{2}\left(3 x^{3}+4\right) \end{aligned}$

PART 1: FACTORING GCFS

(2) Find the GCF of the terms of each polynomial. a. $5 v^{5}+10 v^{3} \quad$ b. $3 t^{2}-18$
c. $4 b^{3}-2 b^{2}-6 b$

PART 1: FACTORING GCFS

(3) Use the GCF to factor each polynomial.
$\begin{array}{ll}\text { a. } 8 x^{2}-12 x & \text { b. } 5 d^{3}+10 d\end{array}$
c. $6 m^{3}-12 m^{2}-24 m$

PART 2: FACTORING BY GROUPING

You can use the Distributive Property to factor by grouping if two groups of terms have the same factor.

$$
\underbrace{\underbrace{\left.y^{2}+3+3\right)}+\underbrace{4(y+3)}}_{\left(y^{2}+4\right)(y+3)}+\begin{aligned}
& \text { These factors are the same, so } \\
& \text { factor again. }
\end{aligned}
$$

To factor by grouping, look for a common binomial factor of two pairs of terms.

PART 2: FACTOR BY GROUPING

(1) Factor each expression. Check your answer.

[^0]
PART 2: FACTOR BY GROUPING

(2) Factor $45 m^{4}-9 m^{3}+30 m^{2}-6 m$.

CAN YOU?? PROVE IT!!

- I can factor a monomial from a polynomial
- I can factor polynomials with four terms Factor completely.

11. $12 v^{3}-32 v^{2}+6 v-16$
12. $7 q^{4}-4 q^{3}+28 q^{2}-16 q$

[^0]: a. $5 t^{4}+20 t^{3}+6 t+24$
 b. $2 w^{3}+w^{2}-14 w-7$

