OBJECTIVES

CHAPTER 8: EXPONENTS \& EXPONENTIAL FUNCTIONS

Exponent Rules

RULE \#1:
MULITPLYING WITH THE SAME BASE
The law that $x^{m} x^{n}=x^{m+n}$
With $x^{m} x^{n}$, how many times will you end up multiplying " x^{*} " Answer: first " m " times, then
by another " n " times, for a total of " $m+n$ " times.
Example: $x^{2} x^{3}=(x x)(x x x)=x x x x x=x^{5}$
So, $x^{2} x^{3}=x^{(2+3)}=x^{5}$

RULE \#2:
POWER TO A POWER

```
The law that (xm)n}=\mp@subsup{x}{}{mn
    * First you multiply "m"times. Then you have to do that " " times, for a total of m\timesn
    Example: ( }\mp@subsup{x}{}{3}\mp@subsup{)}{}{4}=(xxx\mp@subsup{)}{}{4}=(xxx)(xxx)(xxx)(xxx)=xxxxxxxxxxxx = = \mp@subsup{x}{}{12
        So (\mp@subsup{x}{}{3}\mp@subsup{)}{}{4}=\mp@subsup{x}{}{3\times4}=\mp@subsup{x}{}{12}
```

RULE \#3:
DIVIDING WITH THE SAME BASE
The law that $x^{m / x^{n}}=x^{m-n}$

Example: $x^{4} / x^{2}=(x x x x) /(x x)=x x=x^{2}$
So, $x^{4} / x^{2}=x^{(4.2)}=x^{2}$

RULE \#4:
PRODUCT TO A POWER
The law that $(x y)^{n}=x^{n} y^{n}$
To show how this one works, just think of re-arranging all the "x"s and "y" as in this

Example: $(x y)^{3}=(x y)(x y)(x y)=x y x y x y=x x x y y y=(x x x)(y y y)=x^{3} y^{3}$

RULE \#5: QUOTIENT OF A POWER
The law that $(x / y)^{n}=x^{n} / y^{n}$
Similiar to the previous example, fust re-arrange the "x"s and " y "s
Example: $(x / y)^{3}=(x / y)(x / y)(x / y)=(x x x) /(y y y)=x^{3} / y^{3}$

RULE \#6: ZERO EXPONENT

RULE \#7: NEGATIVE EXPONENTS

EXPONENT RULES

Law	Example	
x^{1}	$=x$	6^{1}

CAN YOU?? PROVE IT!!

- I can simplify expressions with exponents

31. $\frac{24 x^{6}}{12 x^{-8}}$
32. $\frac{3 x^{2} y^{-3}}{12 x^{6} y^{3}}$
33. $\left(2 x^{3} y^{-3}\right)^{-2}$
34. $\frac{2 x^{4} y^{-4}}{8 x^{y} y^{3}}$
