CHAPTER 8: EXPONENTS & EXPONENTIAL FUNCTIONS

Exponent Rules

OBJECTIVES

□ I can simplify expressions with exponents

RULE #1: MULTIPLYING WITH THE SAME BASE

RULE #2: POWER TO A POWER

The law that $(x^m)^n = x^{mn}$ First you multiply "m" times. Then you have **to do that "n" times**, for a total of m×n times.

Example: $(x^3)^4 = (x^3)^4 = x^3 = x^{12}$ So $(x^3)^4 = x^3 = x^{12}$

RULE #3: DIVIDING WITH THE SAME BASE

The law that $x^m/x^n = x^{m-n}$ Like the previous example, how many times will you end up multiplying "x"? Answer: "m" times, then reduce that by "n" times (because you are dividing), for a total of "m-n" times.

Example: $x^d/x^2 = (x cox) / (xx) = xx = x^2$ $50, x^d/x^2 = x^{(4-2)} = x^2$

RULE #5: QUOTIENT OF A POWER

The law that $(x/y)^n = x^n/y^n$ Similar to the previous example, Just re-arrange the "x"s and "y"s

Example: $(x/y)^3 = (x/y)(x/y)(x/y) = (xxx)/(yyy) = x^3/y^3$

RULE #4: PRODUCT TO A POWER

The law that $(xy)^n = x^ny^n$ To show how this one works, just think of re-arranging all the "x"s and "y" as in this example:

Example: $(xy)^3 = (xy)(xy)(xy) = xyxyxy = xxxyyy = (xxx)(yyy) = x^3y^3$

RULE #6: ZERO EXPONENT

RULE #7: NEGATIVE EXPONENTS

Example: Powers of 5			
	etc		
5 2	1 × 5 × 5	25	
5 ¹	1 × 5	5	ger
5 ⁰	1	1	5x Large Smaller
5-1	1 ÷ 5	0.2	NO X
5-2	1 ÷ 5 ÷ 5	0.04	
	etc		

CAN YOU?? PROVE IT!!

 $\hfill \hfill \hfill$

- $31.\,\frac{24x^6}{12x^{-8}}$
- $32.\,\frac{3x^2y^{-3}}{12x^6y^3}$
- 33. $(2x^3y^{-3})^{-2}$
- $34.\,\frac{2x^4y^{-4}}{8x^7y^3}$

EXPONENT RULES

Law	Example
$x^1 = x$	61 = 6
$x^0 = 1$	70 = 1
$x^{-1} = 1/x$	4-1 = 1/4
$x^m x^n = x^{m+n}$	$x^2x^3 = x^{2+3} = x^5$
$x^m/x^n = x^{m-n}$	$x^6/x^2 = x^{6-2} = x^4$
$(x^m)^n = x^{mn}$	$(x^2)^3 = x^{2 \times 3} = x^6$
$(xy)^n = x^n y^n$	$(xy)^3 = x^3y^3$
$(x/y)^n = x^n/y^n$	$(x/y)^2 = x^2 / y^2$
$x^{-n} = 1/x^n$	$x^{-3} = 1/x^3$

3