# CHAPTER 9: POLYNOMIALS \& FAC'TORING 

Adding \& Subtracting Polynomials

## OBJECTIVES

## - I can describe polynomials

- I can add and subtract polynomials


## PART 1: DESCRIBING POLYNOMIALS

A monomial is an expression that is a number, a variable, or a product of a number and one or more variables. Each of the following is a monomial.

```
12 y
-5\mp@subsup{x}{}{2}y
c
```

The fraction $\frac{c}{3}$ is a monomial, but the expression $\frac{c}{x}$ is not a monomial because there is a variable in the denominator.

## PART 1: DESCRIBING POLYNOMIALS

The degree of a monomial is the sum of the exponents of its variables. For a nonzero constant, the degree is 0 . Zero has no degree.

```
1) ExamplE Degree of a Monomial
```

Find the degree of each monomial.
a. $\frac{2}{3} x$
b. $7 x^{2} y^{3}$
c. -4

## PART 1: DESCRIBING POLYNOMIALS

A polynomial is a monomial or the sum or difference of two or more monomials.

$$
\left.\begin{array}{l} 
\\
\text { degree } \rightarrow
\end{array} \begin{array}{cccc} 
& 3 x^{4}+5 x^{2}-7 x+1 \\
& \uparrow & \uparrow & \uparrow
\end{array}\right)
$$

The polynomial shown above is in standard form. Standard form of a polynomial means that the degrees of its monomial terms decrease from left to right. The degree of a polynomial in one variable is the same as the degree of the monomial with the greatest exponent. The degree of $3 x^{4}+5 x^{2}-7 x+1$ is 4 .

## PART 1: DESCRIBING POLYNOMIALS

2 Write each polynomial in standard form. Then name each polynomial based on its degree and the number of its terms.
a. $6 x^{2}+7-9 x^{4}$
b. $3 y-4-y^{3}$
c. $8+7 v-11 v$

## PART 1: DESCRIBING POLYNOMIALS

After you simplify a polynomial by combining like terms, you can name the polynomial based on its degree or the number of monomials it contains.

| Polynomial | Degree | Name Using <br> Degree | Number <br> of Terms | Name Using <br> Number of Terms |
| :---: | :---: | :--- | :---: | :---: |
| $7 x+4$ | 1 | linear | 2 | binomial |
| $3 x^{2}+2 x+1$ | 2 | quadratic | 3 | trinomial |
| $4 x^{3}$ | 3 | cubic | 1 | monomial |
| $9 x^{4}+11 x$ | 4 | fourth degree | 2 | binomial |
| 5 | 0 | constant | 1 | monomial |

## PART 2: ADDING POLYNOMIILS

(3) Simplify each sum.
a. $\left(12 m^{2}+4\right)+\left(8 m^{2}+5\right)$
b. $\left(t^{2}-6\right)+\left(3 t^{2}+11\right)$
c. $\left(9 w^{3}+8 w^{2}\right)+\left(7 w^{3}+4\right)$
d. $\left(2 p^{3}+6 p^{2}+10 p\right)+\left(9 p^{3}+11 p^{2}+3 p\right)$

## PART 3: SUBTRACTING POLYNOMIALS

(4) Simplify each difference
a. $\left(v^{3}+6 v^{2}-v\right)-\left(9 v^{3}-7 v^{2}+3 v\right) \quad$ b. $\left(30 d^{3}-29 d^{2}-3 d\right)-\left(2 d^{3}+d^{2}\right)$
c. $\left(4 x^{2}+5 x+1\right)-\left(6 x^{2}+x+8\right)$

## CAN YOU?? PROVE IT!!

- I can describe polynomials
- I can add and subtract polynomials
- Go back and finish all the blank problems ©

