Chapter 9: Transformational Geometry

I Can

- Apply theorems about isometries
a Identify and draw compositions of transformations (glide reflections)

SECTION 4: COMPOSITIONS OF TRANSFORMATIONS

Isometry

THREE TYPES OF TRANSFORMATIONS:

1. Reflections (flipping across a line)
2. Translations (sliding along a vector)
3. Rotations (turning around a point)

A composition of transformations is one transformation followed by another.

Glide reflections are the composition of a translation and a reflection

Theorem 12-4-1

A composition of two isometries is an isometry.

Glide Reflections

The glide reflection that maps $\Delta J K L$ to $\Delta J^{\prime} K^{\prime} L^{\prime}$ is the composition of a translation along \vec{v} followed by a reflection across line ℓ.

Example

$\Delta K L M$ has vertices $K(4,-1), L(5,-2)$, and $M(1,-4)$. Rotate $\triangle K L M 180^{\circ}$ about the origin and then reflect it across the \boldsymbol{y}-axis.

Example

$\Delta J K L$ has vertices $J(1,-2), K(4,-2)$, and $L(3,0)$. Reflect $\triangle J K L$ across the x-axis and then rotate it 180° about the origin.

Theorems

Theorem 12-4-3

Any translation or rotation is equivalent to a composition of two reflections.

Example

Sean reflects a design across line p and then reflects the image across line q. Describe a single transformation that moves the design from the original position to the final position.

I Can

- Apply theorems about isometries

I Identify and draw compositions of transformations (glide reflections)

