Chapter 9: Transformational Geometry

SECTION 3: ROTATIONS

Isometry

An isometry is a transformation that does not change the shape or size of a figure. Also called congruence transformations or rigid motions.

THREE TYPES:

1. Reflections (flipping across a line)
2. Translations (sliding along a vector)
3. Rotations (turning around a point)

I Can

Identify and draw rotations

Rotation?

Tell whether each transformation appears to be a rotation. Explain.
A.

B.

Rotations

Rotations

A rotation is a transformation about a point P, called the center of rotation, such that each point and its image are the same distance from P, and such that all angles with vertex P formed by a point and its image are congruent. In the figure $\angle A P A^{\prime}$ is the angle of rotation.

Helnful-Hint
Unless otherwise stated, all rotations in this book are counterclockwise.

Example

Rotate $\Delta J K L$ with vertices $J(2,2), K(4,-5)$, and $L(-1,6)$ by 180° about the origin.

In the Coordinate Plane

If the angle of a rotation in the coordinate plane is not a multiple of 90°, you can use sine and cosine ratios to find the coordinates of the image.

Example

Rotate $\Delta R S T$ with vertices $R(-1,4), S(2,1)$, and $\boldsymbol{T}(3,-3)$ about the origin by 90°.

Example

A Ferris wheel has a $100 \mathbf{f t}$ diameter and takes 60 s to make a complete rotation. A chair starts at (100,0). After 5 s , what are the coordinates of its location to the nearest tenth?

