CHAPTER 8: EXPONENTS \& EXPONENTIAL FUNCTIONS

Section 8 Part I Exponential Growth

VOCABULARY

Exponential Function	Exponential Growth		
A function in the form $y=a$. b^{x} $a=y$-intercept $b=$ growth factor	An exponential function where the growth factor is greater than I		
EXAMPLE	EXAMPLE		
In $y=3 \cdot 2^{x}$ what is the growth factor? Where does it cross the y -axis?	Graph $y=3 \cdot 2{ }^{\text {t }}$.		
	\times	$3 \cdot 2^{\text {x }}$	(*) ${ }^{\text {a }}$
	-2	3-2-2 $\frac{3}{2}=\frac{3}{4}$	$\left(-2 . \frac{3}{4}\right)$
	-1	$3 \cdot 2^{-1}=\frac{3}{2}=1 \frac{1}{2}$	(-1.1, $\frac{1}{2}$)
	0	$3 \cdot 22^{\prime \prime}-3 \cdot 1=3$	(0.3)
		$3 \cdot 22^{1}-3 \cdot 2=6$	(1.6)

OBJECTIVES

- I can model exponential growth

NOTES

PART 1: EXPONENTIAL GROWTH
In parts of the United States, wolves are being
reintroduced to wilderness areas where they
had become extinct. Suppose 20 wolves are
released in northern Micichan, and the yearly
growth factor for this population is expected
to be 1.2.
a. Make a table showing the projected number
of wolves at the end of each of the first
6 years.
b. Write an equation that models the growth
of the wolf population.

PART 1: EXPONENTIAL GROWTH

```
2. a. The table shows that the elk population in a sate forest is growin
            M||\mp@code{Mrowth of (}
            Elk Population
            Time (yr) Population
        l
    be after 10 years? How many elk will there be after 15 ycars?
    for any year n after the elk were first counted.
```


PART 2: COMPOUND INTEREST

When a bank pays interest on both the principal and the interest an account has already earned, the bank is paying compound interest. An interest period is the length of time over which interest is calculated.

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

Where,

- $\mathrm{P}=$ principal amount (initial investment)
- $\mathrm{r}=$ annual nominal interest rate (as a decimal)
- $\mathrm{n}=$ number of times the interest is compounded per year
- $\mathrm{t}=$ number of years

PART 1: EXPONENTIAL GROWTH

9. Maya's grandfather opened a savings account for her when she was born. He opened the account with $\$ 100$ and did not add or
ake out any money after that. The money in the account grows
at a rate of 4% per year.
a. Make a table to show the amount in the account from the time

Maya was born until she turned 10 .
b. What is the growth factor for the account?

Write an equation for the value of the account after any number
of years. of year

PART 2: COMPOUND INTEREST

When a bank pays interest on both the principal and the interest an account has already earned, the bank is paying compound interest. An interest period is the length of time over which interest is calculated.

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

Where

- $\mathrm{P}=$ principal amount (initial investment)
- $\mathrm{r}=$ annual nominal interest rate (as a decimal)
- $n=$ number of times the interest is compounded per year
- $t=$ number of years

PART 2: COMPOUND INTEREST

Annual Interest Rate of $\mathbf{8 \%}$

Compounded	Periods per Year	Interest Rate per Period
annually	1	8% every year
semi-annually	2	$\frac{8 \%}{2}=4 \%$ every 6 months
quarterly	4	$\frac{8 \%}{4}=2 \%$ every 3 months
monthly	12	$\frac{8 \%}{12}=0 . \overline{6} \%$ every month

PART 2: COMPOUND INTEREST

Savings Suppose the account in Example 2 paid interest compounded quarterly instead of annually. Find the account balance after 18 years.

PART 2: COMPOUND INTEREST

Savings Suppose your parents deposited $\$ 1500$ in an account paying 3.5\% interest compounded annually (once a year) when you were born. Find the account balance after 18 years.

CAN YOU?? PROVE IT"!

- I can model exponential growth

5. Suppose the population of a city is 50,000 and is growing 3% each year. a. The initial amount a is
b. The growth factor b is $100 \%+3 \%$, which is $1+\square=\pi$.
c. To find the population after one year, you multiply $50,000 \cdot$.
d. Complete the equation $y=$ - ${ }^{-1}$ to find the population after x years.
e. Use your equation to predict the population after 25 years.
