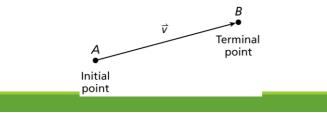
# Chapter 8: Right Triangles & Trigonometry

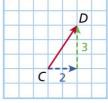
SECTION 6: VECTORS

# Megan Frantz Okemos High School Math Instructor


# I Can

- □ Find the magnitude and direction of a vector
- Use vectors and vector addition to solve real problems

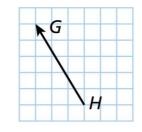
#### Vectors


The speed and direction an object moves can be represented by a *vector*. A <u>vector</u> is a quantity that has both length and direction.

You can think of a vector as a directed line segment. The vector below may be named  $\overline{AB}$  or  $\vec{v}$ .



# Component Form


A vector can also be named using *component form*. The <u>component form</u> < x, y > of a vector lists the **horizontal** and **vertical** change from the initial point to the terminal point. The component form of <u>CD</u> is < 2, 3 >.



## Component Form

Write the vector in component form.

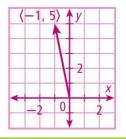
ΗĠ



#### **Component Form**

Write the vector in component form.  $\overline{MN}$  with M(-8, 1) and N(2, -7)

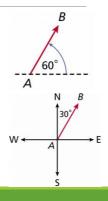
#### Magnitude


The **magnitude** of a vector is its length. The magnitude of a vector is written  $|\overline{AB}|$  or  $|\overline{v}|$ .

When a vector is used to represent speed in a given direction, the magnitude of the vector equals the speed.

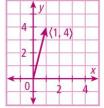
For example, if a vector represents the course a kayaker paddles, the magnitude of the vector is the kayaker's speed.

#### Magnitude


Draw the vector  $\langle -1, 5 \rangle$  on a coordinate plane. Find its magnitude to the nearest tenth.

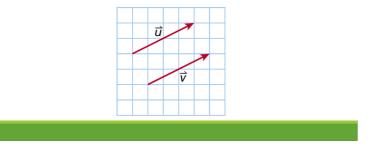


#### Direction


The <u>direction</u> of a vector is the angle that it makes with a horizontal line. This angle is measured counterclockwise from the positive *x*-axis. The direction of  $\overline{AB}$  is 60°.

The direction of a vector can also be given as a bearing relative to the compass directions *north*, *south*, *east*, and *west*.  $\overrightarrow{AB}$  has a bearing of N 30° E.




#### Direction

The force exerted by a skier is given by the vector <1, 4>. Draw the vector on a coordinate plane. Find the direction of the vector to the nearest degree.

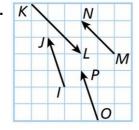



#### **Equal Vectors**

Two vectors are **equal vectors** if they have the same magnitude and the same direction. For example,  $\vec{u} = \vec{v}$ . Equal vectors do not have to have the same initial point and terminal point.



### Parallel Vectors


Two vectors are **parallel vectors** if they have the same direction or if they have opposite directions. They may have different magnitudes. For example,  $\overline{w} \parallel \overline{x}$ . Equal vectors are always parallel vectors.



#### Example

#### Identify each of the following.

A. equal vectors



#### **B.** parallel vectors

#### **Resultant Vectors**

The **resultant vector** is the vector that represents the sum of two given vectors. To add two vectors geometrically, you can use the head-to-tail method or the parallelogram method.

To add vectors numerically, add their components. If  $= \vec{u}x_1, y_1 > \text{ and } = \vec{v}x_2, y_2 >$ , then  $\vec{u} + \vec{v} = \langle x_1 + x_2, y_1 + y_2 \rangle$ .

### Vector Addition

| METHOD                                                                                                                                                                                                                                                | EXAMPLE                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| lead-to-Tail Method                                                                                                                                                                                                                                   |                               |
| Place the initial point (tail) of the second vector<br>on the terminal point (head) of the first vector.<br>The resultant is the vector that joins the initial<br>point of the first vector to the terminal point of<br>the second vector.            | $\vec{u} + \vec{v}$ $\vec{v}$ |
| Parallelogram Method                                                                                                                                                                                                                                  |                               |
| Use the same initial point for both of the given<br>vectors. Create a parallelogram by adding a copy<br>of each vector at the terminal point (head) of the<br>other vector. The <b>resultant vector</b> is a diagonal of<br>the parallelogram formed. |                               |

#### Example

An airplane is flying at a constant speed of 400 mi/h at a bearing of N  $70^{\circ}$  E. A 60 mi/h wind is blowing due north. What are the plane's actual speed and direction? Round the speed to the nearest tenth and the direction to the nearest degree.

# I Can

- □ Find the magnitude and direction of a vector
- Use vectors and vector addition to solve real problems