Chapter 8: Right Triangles & Trigonometry

SECTION 2: TRIGONOMETRY RATIOS

Megan Frantz

Okemos High School

Math Instructor

Background

REMEMBER: If two right angles have one other angle in common, they are similar.

$$\frac{BC}{AC} = \frac{EF}{DF} = \frac{YZ}{XZ}$$

These are trigonometric ratios.

A <u>trigonometric ratio</u> is a ratio of two sides of a right triangle.

I Can

- ☐ Find the sine, cosine and tangent of acute angles
- ☐ Use trig ratios to solve problems

Trig Ratios

DEFINITION	SYMBOLS	DIAGRAM
The sine of an angle is the ratio of the length of the leg opposite the angle to the length of the hypotenuse.	$sin A = \frac{opposite leg}{hypotenuse} = \frac{a}{c}$ $sin B = \frac{opposite leg}{hypotenuse} = \frac{b}{c}$	A B a
The cosine of an angle is the ratio of the length of the leg adjacent to the angle to the length of the hypotenuse.	$\cos A = \frac{\text{adjacent leg}}{\text{hypotenuse}} = \frac{b}{c}$ $\cos B = \frac{\text{adjacent leg}}{\text{hypotenuse}} = \frac{a}{c}$	
The tangent of an angle is the ratio of the length of the leg opposite the angle to the length of the leg adjacent to the angle.	$\tan A = \frac{\text{opposite leg}}{\text{adjacent leg}} = \frac{a}{b}$ $\tan B = \frac{\text{opposite leg}}{\text{adjacent leg}} = \frac{b}{a}$	

Example

Write the trigonometric ratio as a fraction and as a decimal rounded to the nearest hundredth.

sin J

cos J

tan J

Example

Use a special right triangle to write cos 30° as a fraction.

Example

Use your calculator to find the trigonometric ratio. Round to the nearest hundredth.

sin 52°

tan 65°

cos 19°

Example

Find the length. Round to the nearest hundredth.

Example

Find the length. Round to the nearest hundredth.

QR

I Can

- ☐ Find the sine, cosine and tangent of acute angles
- $lue{}$ Use trig ratios to solve problems