Chapter 8: Right Triangles \& Trigonometry

SECTION 1: SIMILARITY IN RIGHT TRIANGLES

I Can

a Use geometric mean to find segment lengths in right triangles

- Apply similarity relationships in right triangles to solve problems

Background

REMEMBER: In a right triangle, an altitude drawn from the vertex of the right angle to the hypotenuse forms two right triangles.

Theorem 8-1-1

The altitude to the hypotenuse of a right triangle forms two triangles that are similar to each other and to the original triangle.
$\triangle A B C \sim \triangle A C D \sim \triangle C B D$

Example

Write a similarity statement comparing the three triangles.

Consequences

You can use Theorem 8-1-1 to write proportions comparing the side lengths of the triangles formed by the altitude to the hypotenuse of a right triangle. All the relationships in red involve geometric means.

$\frac{b}{a}=\frac{y}{h}=\frac{h}{x}$

$$
\frac{c}{a}=\frac{b}{h}=\frac{a}{x}
$$

$$
\frac{c}{b}=\frac{b}{y}=\frac{a}{h}
$$

Corollaries

Corollaries Geometric Means

COROLLARY	EXAMPLE	DIAGRAM
$\mathbf{8 - 1 - 2}$	The length of the altitude to the hypotenuse of a right triangle is the geometric mean of the lengths of the two segments of the hypotenuse.	$h^{2}=x y$
$\mathbf{8 - 1 - 3}$	The length of a leg of a right triangle is the geometric mean of the lengths of the hypotenuse and the segment of the hypotenuse adjacent to that leg.	$a^{2}=x c$ $b^{2}=y c$

Find x, y, and z.

Example

A surveyor positions himself so that his line of sight to the top of a cliff and his line of sight to the bottom form a right angle as shown. What is the height of the cliff to the nearest foot?

I Can

- Use geometric mean to find segment lengths in right triangles
- Apply similarity relationships in right triangles to solve problems

