CHAPTER 7: SYSTEMS OF equations \& Inequalities

Section 6 - Systems of Linear Inequalities

VOCABULARY

System of Linear Inequalities	Solution to a system of linear inequalities Two or more linear inequalities on the same coordinate grid
An ordered pair that makes the BOTH inequalities true (there are infinitely many!!!)	

OBJECTIVES

> I can solve systems of linear inequalities by graphing
> I can write and use systems of linear inequalities to model real situations

PART 1: SOLVING SYSTEMS OF LINEAR INEQUALITIES

Two or more linear inequalities together form a system of linear inequalities.
Two system below describes the lavender-shaded region of the graph. Notice that there are two boundary lines.
System of Linear Inequalities

A solution of a system of linear inequalities makes each inequality in the system true. The graph of a system shows all of its solutions

PART 1: SOLVING SYSTEMS OF LINEAR INEQUALITIES

Solve the system by graphing. CHECK YOUR SOLUTION!!!
$\left\{\begin{array}{l}y>-3 x-3 \\ y<-\frac{1}{2} x+2\end{array}\right.$

PART 2: REAL SITUATIONS

Suppose you want to fence a rectangular garden plot. You want the length of the garden to be at least 50 ft and the perimeter to be no more than 140 ft . Solve by graphing to show all of the possible dimensions of the garden.

PART 1: SOLVING SYSTEMS OF LINEAR INEQUALITIES

Solve the system by graphing. CHECK YOUR SOLUTION!!!
$\left\{\begin{array}{c}y \leq 3 x+1 \\ 4 x+2 y>-8\end{array}\right.$

CAN YOU?? PROVE IT!!

a I can solve systems of linear inequalities by graphing

- I can write and use systems of linear inequalities to model real situations

Mailing Packages Suppose you need $\$ 2.40$ in postage to mail a package to a friend. You have 9 stamps, some $20 c$ and some 34 . How many of each do you need to mail the package?
a. Give two solutions from the graph in Example 4.
a. Give two solutions from the graph in Example 4 . . Does to mail the package?
b. Does solution give you the exact postage needed to
c. Critical Thinking Why are the solutions to the problem only nonnegative integers?

