CHAPTER 7: SYSTEMS OF EQUATIONS & INEQUALITIES

Section 5 - Linear Inequalities

OBJECTIVES

- □ I can graph linear inequalities
- □ I can write and use linear inequalities to model real situations

VOCABULARY

Inequalities	Linear Inequalities	Solution to a linear inequality
A way to compare two expressions using	A region of the coordinate plane that has a boundary line	An ordered pair that makes the inequality true (there are infinitely many!!!)
		Example
Graph on a	Graph on a	

NOTES

PART 1: LINEAR INEQUALITIES

Just as you have used inequalities to describe graphs on a number line, you can use inequalities to describe regions of a coordinate plane.

PART 1: LINEAR INEQUALITIES

A linear inequality describes a region of the coordinate plane that has a boundary line. The solutions of an inequality are the coordinates of the points that make the inequality true.

PART 1: LINEAR INEQUALITIES

Graphing Inequalities

Number Line		Coordinate Plane		
Symbol	Circle	Symbol	Line	
> or <	0	> or <	←→	
≥ or ≤	•	≥ or ≤	←	
Symbol	Direction (only if variable is on the left!!)	Symbol	Direction (only if equation is in y = mx +b!!)	
> or ≥	Arrow right	> or ≥	Shade above	
< or ≤	Arrow left	< or ≤	Shade below	

PART 1: LINEAR INEQUALITIES

EXO.MPle: Determine which ordered pairs are solutions to the linear inequality 2x - 3y < 15

(2, 5) (-1, -7) (3, -4) (0, 0)

PART 1: LINEAR INEQUALITIES

ONE method to solve a Linear Inequality: Graphing!!

Steps for Graphing Linear Inequalities:							
Step 1:	Write the inequality in		_ form!	10 13 4			
Step 2:	Graph the inequality.			2 4 6 8 10			
	*Use a	_ line for < or > symbols.		76			
	*Use a	_ line for \leq or \geq symbols.		-10			
Step 3:	Use a	to determine which side of the line to shade.					
All the points within the shaded region represent solutions to the inequality!!!							

PART 1: LINEAR INEQUALITIES

y > 3x + 2

PART 1: LINEAR INEQUALITIES

Graph:

 $3x - 5y \le 10$

PART 2: REAL SITUATIONS

Cooking Suppose you plan to spend no more than \$24 on meat for a cookout. At your local market, hamburger costs \$3.00/lb and chicken wings cost \$2.40/lb. Find three possible combinations of hamburger and chicken wings you can buy.

CAN YOU?? PROVE IT!!

- I can graph linear inequalities
- □ I can write and use linear inequalities to model real situations

Budget Suppose you are shopping for crepe paper to decorate the school gym for a dance. Gold crepe paper costs \$5 per roll, and blue crepe paper costs \$3 per roll. Your budget allows you to spend at most \$48 for crepe paper. How many rolls of gold and blue crepe paper can you buy without exceeding your budget?

Let x = the number of rolls of blue crepe paper.

Let y = the number of rolls of gold crepe paper.

- a. Write a linear inequality that describes the situation.
- b. Graph the linear inequality.
- c. Write three possible solutions to the problem.
- **d.** Critical Thinking The point (-2,5) is a solution of the inequality. Is it a solution of the problem? Explain.

