CHAPTER 7: SYSTTMS OF equations \& Ineounuties

Section 5 - Linear Inequalities

OBJECTIVES

- I can graph linear inequalities
a I can write and use linear inequalities to model real situations

VOCABULARY

Inequalities	Linear Inequalities	Solution to a linear inequality
A way to compare two expressions using $\leq, \geq,<,>$	A region of the coordinate plane that has a boundary line	An ordered pair that makes the inequality true (there are infinitely many!II)
	Graph on a	Example
Graph on a		

NOTES

PART 1: LINEAR INEQUALITIES

Just as you have used inequalities to describe graphs on a number line, you can use inequalities to describe regions of a coordinate plane.

PART 1: LINEAR INEQUALITTES

A linear inequality describes a region of the coordinate plane that has a boundary line. The solutions of an inequality are the coordinates of the points that make the inequality true.

PART 1: LINEAR INEQUALITIES

Graphing Inequalities

Number Iine		Coordinate Plane	
Symbol	Circle	Symbol	Line
$>$ or $<$	0	$>$ or $<$	$\leftarrow----\rightarrow$
\geq or \leq	\bullet	\geq or \leq	
Symbol	Direction (only if variable is on the left!!)	Symbol	Direction (only if equation is in y $=$ mx +b!!)
$>$ or \geq	Arrow right	$>$ or \geq	Shade above
$<$ or \leq	Arrow left	$<$ or \leq	Shade below

PART 1: LINEAR INEQUALITTES

$\varepsilon \times 0 \mathrm{MP}$ \&: Determine which ordered pairs are solutions to the linear inequality $2 x-3 y<15$

| $(2,5)$ |
| :---: | :---: | :---: |
| $(3,-4)$ |
| |

PART 1: LINEAR INEQUALITIES

ONE method to solve a Linear Inequality: Graphing!

Steps for Graphing Linear Inequalities:

Step 1: Write the inequality in \qquad form!

Step 2: Graph the inequality.
*Use a \qquad line for $<$ or $>$ symbols.
*Use a \qquad line for \leq or \geq symbols.

Step 3: Use a \qquad to determine which side of the line to shade.

PART 1: LINEAR INEQUALITIES

Graph:
$y>3 x+2$

PART 1: LNEEAR INEQUALTTES

Graph:
$3 x-5 y \leq 10$

PART 2: REAL SITUATIONS

Cooking Suppose you plan to spend no more than $\$ 24$ on meat for a cookout. At your local market, hamburger costs $\$ 3.00 / \mathrm{lb}$ and chicken wings cost $\$ 2.40 / \mathrm{lb}$. Find three possible combinations of hamburger and chicken wings you can buy.

CAN YOU?? PROVE IT!!

- I can graph linear inequalities

- I can write and use linear inequalities to model real situations

Budget Suppose you are shopping for crepe paper to decorate the school gym for a dance. Gold crepe paper costs $\$ 5$ per roll, and blue crepe paper costs $\$ 3$ per roll. Your budget allows you to spend at most $\$ 48$ for crepe paper. How many rolls of gold and blue crepe paper can you buy without exceeding your budget?

Let $x=$ the number of rolls of blue crepe paper.
Let $y=$ the number of rolls of gold crepe paper.
a. Write a linear inequality that describes the situation.
b. Graph the linear inequality.
c. Write three possible solutions to the problem.
d. Critical Thinking The point $(-2,5)$ is a solution of the inequality. Is it a solution of the problem? Explain.

