Chapter 7: Similarity

SECTION 4: APPLYING PROPERTIES OF SIMILAR TRIANGLES

Megan Frantz

Okemos High School

Math Instructor

Triangle Proportionality

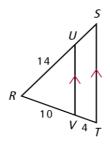
Theorem 7-4-1	Triangle P	roportionality Theorem)——
THEORE	М	HYPOTHESIS	CONCLUSION
If a line parallel to a a triangle intersects two sides, then it di those sides proporti	the other vides	$B \xrightarrow{\overline{EF} \parallel \overline{BC}} C$	$\frac{AE}{EB} = \frac{AF}{FC}$

I Can

- ☐ Use properties of similar triangles to find segments lengths
- ☐ Apply proportionality and triangle angle bisector theorems

Example

Find US.

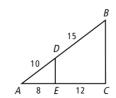


Triangle Proportionality

١	Theorem 7-4-2 Co	nverse of	the Triangle Prop	ortional	lity Theorem	
Ī	THEOREM		HYPOTHESIS		CONCLUSION	
	If a line divides two sides of a triangle proportionally, then it is parallel to the third side.		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$=\frac{AF}{FC}$	ÉF ∥ BC	

Example

Verify that $\overline{DE} \parallel \overline{BC}$.

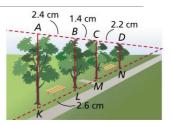


Transversals & Proportionality

Corollary 7-4-3 Two-Transversal Proportionality					
THEOREM	HYPOTHESIS	CONCLUSION			
If three or more parallel lines intersect two transversals, then they divide the transversals proportionally.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{AC}{CE} = \frac{BD}{DF}$			

Example

Use the diagram to find *LM* and *MN* to the nearest tenth.

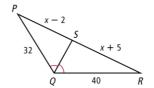


Triangle Proportionality

ŀ	Theorem 7-4-4 Triangle A	ngle Bisector Theorem	
	THEOREM	HYPOTHESIS	CONCLUSION
	An angle bisector of a triangle divides the opposite side into two segments whose lengths are proportional to the lengths of the other two sides. $(\Delta \angle$ Bisector Thm.)	$B \longrightarrow C$	$\frac{BD}{DC} = \frac{AB}{AC}$

Example

Find PS and SR.



I Can

- ☐ Use properties of similar triangles to find segments lengths
- ☐ Apply proportionality and triangle angle bisector theorems