I Can

□ Identify similar polygons

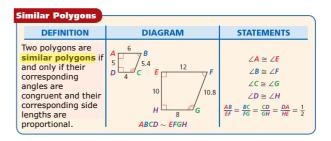
Apply properties of similar polygons to solve problems

Chapter 7: Similarity

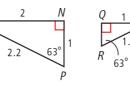
SECTION 1: RATIOS IN SIMILAR POLYGONS

Megan Frantz	Okemos High School	Math Instructor

Similar vs. Congruent


•SIMILAR (~): Same shape, not always the same size

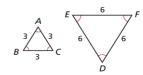
•CONGRUENT (\cong): Same size and shape



Similar Polygons

Example

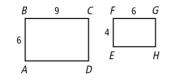
Identify the pairs of congruent angles and corresponding sides.



Similarity Ratio

A **<u>similarity ratio</u>** is the ratio of the lengths of the corresponding sides of two similar polygons.

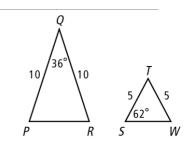
The similarity ratio of ΔABC to ΔDEF is $\frac{3}{6}$, or $\frac{1}{2}$.


The similarity ratio of $\triangle DEF$ to $\triangle ABC$ is $\frac{6}{3}$, or 2.

Example

Determine whether the polygons are similar. If so, write the similarity ratio and a similarity statement.

М



rectangles ABCD and EFGH

Example

Determine whether the polygons are similar. If so, write the similarity ratio and a similarity statement.

△*PQR* and △*STW*

Example

Determine if $\triangle JLM \sim \triangle NPS$. If so, write the similarity ratio and a similarity statement. L 60 M N N $\frac{1}{18}$ S

Example

A boxcar has the dimensions shown. A model of the boxcar is 1.25 in. wide. Find the length of the model to the nearest inch.

I Can

- Identify similar polygons
- Apply properties of similar polygons to solve problems