ICan

Identify similar polygons

- Apply properties of similar polygons to solve problems

Chapter 7: Similarity

Similar vs. Congruent

- SIMILAR (${ }^{\sim}$): Same shape, not always the same size

${ }^{\circ}$ CONGRUENT (œ): Same size and shape

Similar Polygons

Similar Polygons		
DEFINITION	DIAGRAM	STATEMENTS
Two polygons are similar polygons if and only if their corresponding angles are congruent and their corresponding side lengths are proportional.		$\begin{aligned} & \angle A \cong \angle E \\ & \angle B \cong \angle F \\ & \angle C \cong \angle G \\ & \angle D \cong \angle H \\ & \frac{A B}{E F}=\frac{B C}{F G}=\frac{C D}{G H}=\frac{D A}{H E}=\frac{1}{2} \end{aligned}$

Example

Identify the pairs of congruent angles and corresponding sides.

Example

Determine whether the polygons are similar. If so, write the similarity ratio and a similarity statement.

rectangles $A B C D$ and $E F G H$

Similarity Ratio

A similarity ratio is the ratio of the lengths of the corresponding sides of two similar polygons.

The similarity ratio of $\triangle A B C$ to $\triangle D E F$ is $\frac{3}{6}$, or $\frac{1}{2}$.
The similarity ratio of $\triangle D E F$ to $\triangle A B C$ is $\frac{6}{3}$, or 2 .

Example

Determine whether the polygons are similar. If so, write the similarity ratio and a similarity statement.
$\triangle P Q R$ and $\triangle S T W$

Example

Determine if $\triangle J L M \sim \triangle N P S$. If so, write the similarity ratio and a similarity statement.

I Can

- Identify similar polygons
- Apply properties of similar polygons to solve problems

Example

A boxcar has the dimensions shown.
A model of the boxcar is 1.25 in . wide. Find the length of the model to the nearest inch.

