I Can

Chapter 12: Circles

SECTION 1: LINES THAT INTERSECT CIRCLES

Circles

REMEMBER: A circle is the set of all points in a plane that are equidistant from a given point, called the center of the circle.

A circle with center C is called circle C, or $\odot C$.
The interior of a circle is the set of all points inside the circle. The exterior of a circle is the set of all points outside the circle.

Lines \& Segments
Lines and Segments That Intersect Circles
TERM
A chord is a segment whose endpoints lie on
a circle.
A secant is a line that intersects a circle at
two points.

A tangent is a line in the same plane as a
circle that intersects it at exactly one point.
The point where the tangent and a circle
intersect is called the point of tangency.

Identifying Lines \& Segments

Identify each line or segment that intersects $\odot L$.

chords:
secant:
tangent: diameter: radii:

Pairs of Circles

Pairs of Circles	
term	diAgram
Two circles are congruent circles if and only if they have congruent radii.	
Concentric circles are coplanar circles with the same center.	
Two coplanar circles that intersect at exactly one point are called tangent circles.	

More Lines

A common tangent is a line that is tangent to two circles.

Lines ℓ and m are common
external tangents to $\odot A$ and $\odot B$.

Theorems

Example

$\overline{H K}$ and $\overline{\boldsymbol{H G}}$ are tangent to $\odot \boldsymbol{F}$. Find $\boldsymbol{H G}$.

Theorems

Theorem 11-1-3		
THEOREM	HYPOTHESIS	CONCLUSION
lf two segments are tangent to a circle from the same external point, then the segments are congruent. (2 segs. tangent to \odot from same ext. pt. \rightarrow segs. \cong)	$\overline{A B}$ and $\overline{A C}$ are tangent to $\odot P$.	

ICan

Identify tangents, secants and chords

- Use properties of tangents to solve problems

