CHAPTER 11: RADICAL EXPRESSIONS

II. 2 Operations with Radical Expressions

OBJECTIVES

- I can add, subtract, multiply and divide radical expressions

PART 1: SIMPLIFYING RADICAL EXPRESSIONS

For radical expressions, like radicals have the same radicand. Unlike radicals do not have the same radicand. For example, $4 \sqrt{7}$ and $-12 \sqrt{7}$ are like radicals, but $3 \sqrt{11}$ and $2 \sqrt{5}$ are unlike radicals. To simplify sums and differences, you use the Distributive Property to combine like radicals.

PART 1: ADDING \& SUBTRACTING

(1) Simplify each expression.
a. $-3 \sqrt{5}-4 \sqrt{5}$
b. $\sqrt{10}-5 \sqrt{10}$

PART 1: ADDING \& SUBTRACTING

(2) Simplify each expression.

$$
\text { a. } 3 \sqrt{20}+2 \sqrt{5}
$$

b. $3 \sqrt{3}-2 \sqrt{27}$

PART 2: MULTIPLYING

(3) Simplify each radical expression.
a. $\sqrt{5}(2+\sqrt{10})$
b. $\sqrt{2 x}(\sqrt{6 x}-11)$

PART 2: MULTIPLYING

(4) Simplify each radical expression.
a. $(2 \sqrt{6}+3 \sqrt{3})(\sqrt{6}-5 \sqrt{3})$
b. $(\sqrt{7}+4)^{2}$

PART 3: DIVISION

Conjugates are the sum and the difference of the same two terms. The radical expressions $\sqrt{5}+\sqrt{2}$ and $\sqrt{5}-\sqrt{2}$ are conjugates. The product of two conjugates results in a difference of two squares.

$$
\begin{aligned}
(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2}) & =(\sqrt{5})^{2}-(\sqrt{2})^{2} \\
& =5-2 \\
& =3
\end{aligned}
$$

Notice that the product of these conjugates has no radical.

PART 3: DIVISION

(5) Simplify each expression.
a. $\frac{4}{\sqrt{7}+\sqrt{5}}$
b. $\frac{-4}{\sqrt{10}}+\sqrt{8}^{-4}$
c. $\frac{-5}{\sqrt{11}}-\sqrt{3}^{-1}$

CAN YOU?? PROVE IT!!

I I can simplify radical expressions

- Go back and finish all the blank problems

Summary

Simplest Radical Form

A radical expression is in simplest radical form when all three statements are true.

- The radicand has no perfect-square factors other than 1.
- The radicand has no fractions.
- The denominator of a fraction has no radical.

