CHAPTER 11: RADICAL EXPRESSIONS

11.2 Operations with Radical Expressions

OBJECTIVES

□ I can add, subtract, multiply and divide radical expressions

PART 1: SIMPLIFYING RADICAL EXPRESSIONS

For radical expressions, **like radicals** have the same radicand. **Unlike radicals** do not have the same radicand. For example, $4\sqrt{7}$ and $-12\sqrt{7}$ are like radicals, but $3\sqrt{11}$ and $2\sqrt{5}$ are unlike radicals. To simplify sums and differences, you use the Distributive Property to combine like radicals.

PART 1: ADDING & SUBTRACTING

1 Simplify each expression.

a.
$$-3\sqrt{5} - 4\sqrt{5}$$

b.
$$\sqrt{10} - 5\sqrt{10}$$

PART 1: ADDING & SUBTRACTING

2 Simplify each expression. **a.** $3\sqrt{20} + 2\sqrt{5}$

b.
$$3\sqrt{3} - 2\sqrt{27}$$

PART 2: MULTIPLYING

3 Simplify each radical expression.

a.
$$\sqrt{5}(2 + \sqrt{10})$$

a.
$$\sqrt{5}(2 + \sqrt{10})$$
 b. $\sqrt{2x}(\sqrt{6x} - 11)$

PART 2: MULTIPLYING

4 Simplify each radical expression.

a.
$$(2\sqrt{6} + 3\sqrt{3})(\sqrt{6} - 5\sqrt{3})$$

b.
$$(\sqrt{7} + 4)^2$$

PART 3: DIVISION

Conjugates are the sum and the difference of the same two terms. The radical expressions $\sqrt{5} + \sqrt{2}$ and $\sqrt{5} - \sqrt{2}$ are conjugates. The product of two conjugates results in a difference of two squares.

$$(\sqrt{5} + \sqrt{2})(\sqrt{5} - \sqrt{2}) = (\sqrt{5})^2 - (\sqrt{2})^2$$

= 5 - 2
= 3

Notice that the product of these conjugates has no radical.

PART 3: DIVISION

Simplify each expression.

a.
$$\frac{4}{\sqrt{7} + \sqrt{5}}$$

b.
$$\frac{-4}{\sqrt{10} + \sqrt{8}}$$

c.
$$\frac{-5}{\sqrt{11} - \sqrt{3}}$$

CAN YOU?? PROVE IT!!

- I can simplify radical expressions
 - □ Go back and finish all the blank problems ©

Summary

Simplest Radical Form

A radical expression is in simplest radical form when all three statements are true.

- The radicand has no perfect-square factors other than 1.
- The radicand has no fractions.
- The denominator of a fraction has no radical.