Chapter 11: Surface Area & Volume

SECTION 1: SOLID GEOMETRY

Megan Frantz

Okemos High School

Math Instructor

Edge

Vertex

Solid Geometry

Three-dimensional figures, or solids, can be made up of flat or curved surfaces.

Each flat surface is called a face.

An $\underline{\textbf{edge}}$ is the segment that is the intersection of two faces.

A <u>vertex</u> is the point that is the intersection of three or more faces.

I Can

- ☐ Classify three dimensional figures according to their properties
- ☐ Use nets and cross sections to analyze 3D figures

3D Figures

TERM	EXAMPLE
A prism is formed by two parallel congruent polygonal faces called <i>bases</i> connected by faces that are parallelograms.	Bases
A cylinder is formed by two parallel congruent circular bases and a curved surface that connects the bases.	Bases
A pyramid is formed by a polygonal base and triangular faces that meet at a common vertex.	Vertex
A cone is formed by a circular base and a curved surface that connects the base to a vertex.	Vertex

Prisms

A <u>cube</u> is a prism with six square faces. Other prisms and pyramids are named for the shape of their bases.

2

Rectangular

Pentagonal

prism

Triangular prism

prism

prism

Triangular pyramid

Rectangular pyramid

Pentagonal pyramid

Hexagonal pyramid

Classifying 3D Figures

Classify the figure. Name the vertices, edges, and bases.

Nets

A **net** is a diagram of the surfaces of a threedimensional figure that can be folded to form the three-dimensional figure.

To identify a three-dimensional figure from a net, look at the number of faces and the shape of each face.

Nets

Describe the three-dimensional figure that can be made from the given net.

Cross Sections

A **<u>cross section</u>** is the intersection of a threedimensional figure and a plane.

Describe the cross section.

I Can

- ☐ Classify three dimensional figures according to their properties
- ☐ Use nets and cross sections to analyze 3D figures