Chapter 10: Perimeter, Area \& Circumference

SECTION 6: GEOMETRIC PROBABILITY

Review Probability

Remember that in probability, the set of all possible outcomes of an experiment is called the sample space. Any set of outcomes is called an event.

If every outcome in the sample space is equally likely, the theoretical probability of an event is

$$
P=\frac{\text { number of outcomes in the event }}{\text { number of outcomes in the sample space }}
$$

I Can

- Calculate Geometric Probabilities
- Use geometric probabililies to predict results in real life

Geometric Probability

Geometric probability is used when an experiment has an infinite number of outcomes.

In geometric probability, the probability of an event is based on a ratio of geometric measures such as length or area. The outcomes of an experiment may be points on a segment or in a plane figure.

Geometric Probability

Geometric Probability				
Model	Length	Angle Measure	Area	
Example	A	B		
Sample space	All points on $\overline{A D}$	All points in the circle	All points in the rectangle	
Event	All points on $\overline{B C}$	All points in the shaded region	All points in the triangle	
Probability	$P=\frac{B C}{A D}$	$P=\frac{\text { measure of angle }}{360^{\circ}}$	$P=\frac{\text { area of triangle }}{\text { area of rectangle }}$	

Angle Measures

Use the spinner to find the probability of each event.

the pointer landing on yellow
the pointer landing on blue or red

Length

A point is chosen randomly on PS. Find the probability of each event.

The point is on $\overline{R S}$. The point is not on $\overline{Q R}$.

Areas

Find the probability that a point chosen randomly inside the rectangle is in each shape. Round to the nearest hundredth.

the circle
the trapezoid

I Can

- Calculate Geometric Probabilities
- Use geometric probabilities to predict results in real life

