CHAPTER 12: QUADRATTC EQUATIONS

10.5 Solving Quadratics by Completing the Square

OBJECTIVES

- I can solve a quadratic equation by completing the square

PART 1: PERFECT SQUARE TRINOMILLS

Find the value of \boldsymbol{n} such that each expression is a perfect square trinomial.

$$
\begin{array}{lll}
\text { 1. } k^{2}+14 k+n & \text { 2. } m^{2}-8 m+n & \text { 3. } y^{2}-40 y+n
\end{array}
$$

\square
\square

PART 2: SOLVING USING PERFECT SQUARES
Factor \& solve $x^{2}+2 x=0$.

Fill a perfect square as well as you can to match the equation
$x^{2}+2 x=0$

Complete the square by adding a constant to both sides of the equation

$$
x^{2}+2 x+\ldots=
$$

PART 2: SOLVING USING PERFECT SQUARE

The procedure for completing the square:

1. Write the equation in the form $x^{2}+b x$
2. Complete the square with (half of b) squared. Add this to both sides of the equation.

- 3. Factor the perfect square trinomial.

4. Take the square root of both sides. In this step, make sure you take both square roots on the right side.

PART 2: SOLVING USING PERFECT SQUARES
$x^{2}+2 x+$ \qquad $=$ \qquad
Factor the new expression. It should be a perfect square.

Solve the equation by taking the square roots of both sides.

PART 2: COMPLETING THE SQUARE

(2) Solve the equation $m^{2}-6 m=247$.

PART 2: COMPLETING THE SQUARE
Solve the equation $x^{2}+9 x=136$.

PART 2: COMPLETING THE SOUARE

(4) Solve each equation. Round to the nearest hundredth.
a. $4 a^{2}-8 a=24 \quad$ b. $5 n^{2}-3 n-15=10$

CAN YOU?? PROVE IT!!

- I can solve a quadratic equation by completing the square

23. $3 q^{2}-12 q=15$
