## CHAPTER 11: RADICAL EXPRESSIONS

## OBJECTIVES

## - I can identify a quadratic equation

- I can solve a quadratic equation by taking a square root


## PART 1: QUADRATIC EQUATIONS

## Definition

Standard Form of a Quadratic Equation
A quadratic equation is an equation that can be written in the form $a x^{2}+b x+c=0$, where $a \neq 0$. This form is called the standard form of a quadratic equation.

A quadratic equation can have two, one, or no real-number solutions. In a future course you will learn about solutions of quadratic equations that are not real refers to real-number solutions.
The solutions of a quadratic equation and the related $x$-intercepts are often called roots of the equation or zeros of the function.

## PART 1: QUADRATIC EQUATIONS

b. $x^{2}=0$
c. $x^{2}+4=0$


There are two solutions, $\pm 2$.


There is one solution, 0 .


There is no solution.

## PART 2: SOLVING WITH SQUARE ROOTS

\[\)|  Definition  |  Standard Form of a Quadratic Equation  |
| :--- | :--- | :--- |
|  A quadratic equation is an equation that can be written in the  <br>  forma $a x^{2}+b x+c=0, \text { where } a \neq 0 . \text { This form is called the }$ <br>  standard form of a quadratic equation.  |  |
|  2. Solve each equation.  |  |
|  a. $t^{2}-25=0$  b.  $3 n^{2}+12=12$  c.  $2 g^{2}+32=0$ |  |

\]

## PART 2: SOLVING WITH SQUARE ROOTS

3 A city is planning a circular fountain. The depth of the fountain will be 3 ft and the volume will be $1800 \mathrm{ft}^{3}$. Find the radius of the fountain.

## CAN YOU?? PROVE IT"!

- I can identify a quadratic equation -Write an example of a quadratic equation and a non-example
- I can solve a quadratic equation by taking a
square root
a. Solve $x^{2}-4=0$ and $2 x^{2}-8=0$
b. Critical Thinking Why does it make
sense that the graphs have the same $x$-intercepts?

