Chapter 10: Perimeter, Area \& Circumference

SECTION 2: CIRCLES \& REGULAR POLYGONS

Circles

A circle is the locus of points in a plane that are a fixed distance from a point called the center of the circle. A circle is named by the symbol \odot and its center. $\odot A$ has radius $r=A B$ and diameter $d=C D$.

I Can

- Develop and apply the formulas for the area \& circumference of a circle
a Develop and apply the formula for the area of a regular polygon

Circles

The irrational number π is defined as the ratio of the circumference C to the diameter d, or $\pi=\frac{C}{d}$.

Object: \qquad
Diameter: \qquad
Circumference: \qquad
Ratio: \qquad
Solving for C gives the formula $C=\pi d$. Also $d=2 r$, so $C=2 \pi r$.

Area of a Circle

You can use the circumference of a circle to find its area. Divide the circle and rearrange the pieces to make a shape that resembles a parallelogram.

The base of the parallelogram is about half the circumference, or πr, and the height is close to the radius r. So $A \cong \pi r \cdot r=\pi$ r^{2}.

Area \& Circumference

Circumference and Area Circle

A circle with diameter d and radius r has circumference
$C=\pi d$ or $C=2 \pi r$ and area $A=\pi r^{2}$.

Examples

Find the radius of $\odot J$ if the circumference is $(65 x+14) \pi m$.

Regular Polygons

The center of a regular polygon is equidistant from the vertices.

The apothem is the distance from the center to the midpoint of a side (perpendicular).

A central angle of a regular polygon has its vertex at the center, and its sides pass through consecutive vertices. Each central angle measure of a regular n gon is $\frac{360^{\circ}}{n}$.

Area \& Perimeter

To find the area of a regular n-gon with side length s and apothem a, divide it into n congruent isosceles triangles.

The perimeter is $P=n s$.
area of each triangle: $\frac{1}{2}$ as

total area of the polygon: $A=n\left(\frac{1}{2} a s\right)$, or $A=\frac{1}{2} a \mathrm{~ns}$

Regular Polygons

Regular pentagon $D E F G H$ has a center C, apothem $B C$, and central angle $\angle D C E$.

Area \& Perimeter

Area Regular Polygon

The area of a regular polygon with apothem
a and perimeter P is $A=\frac{1}{2} a P$.

Examples

Find the area of regular heptagon with side length $\mathbf{2} \mathbf{f t}$ to the nearest tenth.

I Can

D Develop and apply the formulas for the area \& circumference of a circle

- Develop and apply the formula for the area of a regular polygon

