Chapter 10: Perimeter, Area & Circumference

SECTION 2: CIRCLES & REGULAR POLYGONS

Megan Frantz Okemos High School Math Instructor

I Can

- Develop and apply the formulas for the area & circumference of a circle
- Develop and apply the formula for the area of a regular polygon

Circles

A circle is the locus of points in a plane that are a fixed distance from a point called the center of the **circle**. A circle is named by the symbol \odot and its center. $\odot A$ has radius r = AB and diameter d = CD.

Circles

The irrational number π is defined as the ratio of the circumference <i>C</i> to the diameter <i>d</i> , or $\pi = \frac{C}{d}$.
Object:
Diameter:
Circumference:
Ratio:
Solving for C gives the formula $C = \pi d$. Also $d = 2r$, so $C = 2\pi r$.

Area of a Circle

You can use the circumference of a circle to find its area. Divide the circle and rearrange the pieces to make a shape that resembles a parallelogram.

The base of the parallelogram is about half the circumference, or πr , and the height is close to the radius r. So $A \cong \pi r \cdot r = \pi$ r^2 .

Area & Circumference

Circumference and Area	Circle
------------------------	--------

A circle with diameter *d* and radius *r* has circumference $C = \pi d$ or $C = 2\pi r$ and area $A = \pi r^2$.

Examples

Find the area of $\odot K$ in terms of π .

Examples

Find the radius of $\odot J$ if the circumference is $(65x + 14)\pi$ m.

Regular Polygons

The center of a regular polygon is equidistant from the vertices.

The **apothem** is the distance from the center to the midpoint of a side (perpendicular).

A central angle of a regular polygon has its vertex at the center, and its sides pass through consecutive vertices. Each central angle measure of a regular ngon is 360°

п

Regular Polygons

Regular pentagon DEFGH has a center C, apothem BC, and central angle $\angle DCE$.

Area & Perimeter

To find the area of a regular *n*-gon with side length s and apothem a, divide it into n congruent isosceles triangles.

н

The perimeter is P = ns.

area of each triangle: $\frac{1}{2}as$

total area of the polygon: $A = n \left(\frac{1}{2}as\right)$, or $A = \frac{1}{2}a$ ns

Area & Perimeter

The area of a regular polygon with apothem a and perimeter P is $A = \frac{1}{2}aP$.

Examples

Find the area of regular heptagon with side length 2 ft to the nearest tenth.

I Can

- Develop and apply the formulas for the area & circumference of a circle
- Develop and apply the formula for the area of a regular polygon